Analyzing The Impact of Construction Industry Under Potential Carbon Regulation Policies

Yujie Lu, Xinyuan Zhu, and Qingbin Cui

November 4, 2010

Center for Excellence in Project Management

AT THE UNIVERSITY OF MARYLAND, COLLEGE PARK

Outline

- 1. Research Background
- 2. Global Carbon Policies
- 3. Model Setup
- 4. Empirical Analysis
- 5. Conclusion

1. Climate Change Basic

Source of CO₂ Concentration data: Keeling, C.D. and T.P. Whorf. 2005. Atmospheric CO₂ records from sites in the SiO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.DOE, Oak Ridge, Tenn., U.S.A.

Source of Temperature data:Brohan, P., J.J. Kennedy, I. Haris, S. F.B. Tett, and P.D. Jones. 2006. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Journal of Geophysical Research 111: D12106, doi:10.1029/2003JA009974.

© Crown copyright 2006; data provided by the Met Office

Graph Source: Cazenave, A., and R. S. Nerem (2004), Present-day sea level change: Observations and causes, Rev. Geophys., 42, RG3001, doi:10.1029/2003RG000139.

No Matter You Believe or Not, Carbon Regulation is Underway.

Federal Level: EPA Formally Announces Phase-in of Clean Air Act Permitting for Greenhouse

State and Local Level: Carbon markets and tax have been established and are being developed

- RGGI, WCI, and MGGRA
- CO and MD carbon tax

Other Legislative Efforts

2. Global Carbon Policies

Carbon Tax

- A tax levied on carbon dioxide emissions from fossil fuels
- A price instrument
- Emission Standards (Command-and-Control)
- The government regulates all activities' carbon emission up to a certain amount of number, and strictly implements for all units.
- A quantity instrument

Cap And Trade

- Set an overall limits on fossil fuel emissions, requires firms to purchase permits to discharge carbon emission, and establishes a market in those permits. The transfer of permits is referred to as a trade.
- A quantity instrument

Others

Should the AEC Industry Care?

Table GHG emissions in the construction industry

Sectors	Data	GHG	% of US	Data
		Emission (MMTCO2e)	Emissions	Source
Construction Site Fossil Fuel Combustion Purchased Electricity	2002	131 ^① 100 31	1.7%	EPA
Upstream – Material Processing				
Cement Combustion related CO ₂ Cement Production related CO ₂	2001	76.9 ^② 35.5 41.4	1.1%	EIA
Iron and steel	2002	20.2 ³	0.3%	EIA, USGS
Limestone	2006	19.6	0.3%	EIA
Construction – Life Cycle	2002	498 ^④	7.2%	CMU-GDI
Buildings	2002	2236	32.2%	DOE

Sources: ①(U.S. EPA 2008); ②(Hanle 2004); ③(US Geological Survey 2002); ④(Hendrickson and Horvath 2000).

How will the AEC industry be affected?

- industrial production and capacity (output, unit price, etc)
- Industrial Structure (market share, emission reduction contribution)
- Individual Firm's reaction (technology v.s. production strategy)
- > Impact on consumers (sharing of carbon price)

3. Model Setup

- Full Competition V.S. Monopoly
- Market Driven V.S. Cost Driven
- Construction Sectors
- Product Indifference
- Industrial Production (Unit Selection)
- Dynamic V.S. Stationary
- Data Source (Census, Economic Report Of The President, NAHB

Survey, Chicago Climate Exchange, IPCC)

8

new single family house sold in U.S. 2002-2008

Duopoly Competition Model ---- Without Carbon Policy

Building Supplier

Carbon Regulation Based Duopoly Model

Building Supplier

Model Solvability

 $\begin{array}{l} \underline{\text{Company 1:}}\\ \max \Pi_1 = \left[\alpha - \beta(q_1 + q_2) \right] * q_1 - (\gamma_1 * q_1) + \mu * (e_1 * q_1) + F(e_1))\\ \text{s.t.} \quad q_1 \ge 0, e_1 \ge 0\\ \underline{\text{Company 2:}}\\ \max \Pi_2 = \left[\alpha - \beta(q_1 + q_2) \right] * q_2 - (\gamma_2 * q_2 + \mu * (e_2 \cdot q_2) - F(e_2))\\ \text{s.t.} \quad q_2 \ge 0, e_2 \ge 0 \end{array}$

After proving its optimality sufficient by KKT conditions, we solve the problem using Non-linear Complementary Problem(NCP):

$$0 \leq \begin{pmatrix} q_1 \\ e_1 \\ q_2 \\ e_2 \end{pmatrix} \perp G \begin{pmatrix} q_1 \\ e_1 \\ q_2 \\ e_2 \end{pmatrix} = \begin{pmatrix} 2\beta q_1 + \beta q_2 - \alpha + \gamma_1 + \mu * e_1 \\ \alpha_p * q_1 + F'(e_1) \\ 2\beta q_2 + \beta q_1 - \alpha + \gamma_2 + \mu * e_2 \\ \alpha_p * q_2 + F'(e_2) \end{pmatrix} \geq 0$$

Different Policies Impact On The Industrial Production

Effectiveness of Different Carbon Policies

Different Policies Impact On Industrial Structure

Carbon Tax

Different Policies Impact On Industrial Structure

Emission Standard

Different Policies Impact On Industrial Structure

Cap and Trade

Individual Firm's Reaction

- large contractor's technology cost
- --- large contractor's technology cost percent
- --- small contractor's technology cost percent

Impact On Consumers

Carbon price allocation Carbon tax allocation 102.0 104 103 102

- INDUSTRY IMPACT: emission standard
- STRUCTURE IMPACT: limited
- INDIVIDUAL REACTION: dependent
- > IMPACT ON CONSUMER: significant and sharing

Questions?

Thank you

Qingbin Cui University of Maryland Email: <u>cui@umd.edu</u>